طرح های همسایه متعادل مدور بهینه

Authors

فاطمه دلشاد چرمهینی

fateme delshad chermahini department of mathematical science, isfahan university of technology , isfahan, iran.گروه آمار، دانشگاه صنعتی اصفهان سعید پولادساز

saeid pooladsaz department of mathematical science, isfahan university of technology , isfahan, iran.گروه آمار، دانشگاه صنعتی اصفهان

abstract

در برخی آزمایش ها، تیمارها تحت تأثیر اثرات همسایه ها قرار می گیرند. در این موارد بهتر است از طرح هایی استفاده شود که هر تیمار، هر یک از تیمارهای دیگر را به تعداد یکسان در همسایگی خود داشته باشد و به عبارت دیگر همسایه ها متعادل باشند. طرح های همسایه متعادل به دو دسته تقسیم می شوند. در طرح های دسته اول، اثرات همسایه چپ و راست یکسان است درحالی که در طرح های دسته دوم این دو اثر با هم متفاوتند. در بسیاری از پژوهش هایی که انجام شده است به ساختن طرح های دسته اول پرداخته اند. در این مقاله چگونگی ساختن طرح های دسته دوم با روش تغییرات دوره ای بیان می شود. همچنین برای چندین مقدار از v (تعداد تیمار) و k (اندازه بلوک) با استفاده از نرم افزار matlab این طرح ها به دست آورده می شوند. سپس برخی از آنها که تحت مدل با اثرات همسایه یک طرفه، بهینه عمومی هستند مشخص خواهند شد.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

طرح‌های همسایه متعادل مدور بهینه

در برخی آزمایش‌ها، تیمارها تحت تأثیر اثرات همسایه‌ها قرار می‌گیرند. در این موارد بهتر است از طرح‌هایی استفاده شود که هر تیمار، هر یک از تیمارهای دیگر را به تعداد یکسان در همسایگی خود داشته باشد و به‌عبارت دیگر همسایه‌ها متعادل باشند. طرح‌های همسایه متعادل به دو دسته تقسیم می‌شوند. در طرح‌های دسته اول، اثرات همسایه چپ و راست یکسان است درحالی‌که در طرح‌های دسته دوم این دو اثر با هم متفاوتند. در ب...

full text

طرح های همسایه-متعادل مدور

آزمایش ها در کشاورزی، باغبانی و جنگلداری اغلب اثرات همسایه را نشان می دهند. طرح هایی که هر دو تیمار به تعداد یکسان در همسایگی یکدیگر قرار می گیرند را طرح های همسایه متعادل می نامند.بلوکی که تیمار در اولین واحد آزمایش همسایه تیمار در آخرین واحد آزمایش باشد را بلوک مدور می نامند. طرح همسایه متعادلی که تمام بلوک های آن مدور باشند را طرح همسایه-متعادل مدور می نامند. در این پایان نامه روش هایی برای ...

15 صفحه اول

طرح های همسایه - متعادل مدور بهینه و کارا برای مشاهدات همبسته

در این پایان نامه طرح های بلوکی همسایه-متعادل با خطاهای همبسته مورد مطالعه قرار گرفته است. در این طرح ها هر تیمار به گونه ای به هر واحد آزمایش اختصاص داده می شود که هر تیمار به تعداد دفعات یکسان در همسایگی تیمارهای دیگر قرار می گیرد. ابتدا با توجه به تعریف معیار بهینگی عمومی روشی برای به دست آوردن طرح های بهینه معرفی می شود که اساس این روش ماکسیمم کران بالایی است که برای اثر ماتریس اطلاع در نظر...

15 صفحه اول

طراحی بهینه ساختارهای مشبک مدور

در این مقاله بهینه­سازی وزنی ساختارهای مشبک مدور کامپوزیتی ( استوانه­ای و مخروطی) تحت بار محوری بررسی می­شود. در ابتدا معادلات حاکم به منظور استخراج ماتریس سفتی با توجه به هندسه سازه بدست ­آورده شده­اند. همچنین روابط و قید‌های مربوط به بهینه‌سازی وزنی این ساختارها با توجه به استحکام کمانشی ارائه شده است. با ایجاد یک مدل اجزای محدود از ساختار مشبک مخروطی تحلیل خطی کمانش انجام شده و نتایج تحلیل ب...

full text

طرح بهینه در ساختار طرح های بلوکی ناقص متعادل نامنظم

ساختار یک طرح بلوکی به صورت (v,b,k)‎ مشخص می شود که به ترتیب نشان دهنده تعداد تیمار، تعداد بلوک، و اندازه بلوک ها است. وقتی ‎v>k، به عبارت دیگر هرگاه هر بلوک تنها شامل تعدادی از تیمارها و نه تمام آن ها باشد، این ساختار بیان کننده ساختار طرح های بلوکی ناقص است. در هر کلاس از چنین ساختارهایی، طرح های بلوکی ناقص متعادل ‎(bib)‎ در صورت وجود، تحت بسیاری از معیارهای بهینگی، طرح بهینه بوده و اصطلاحاً ط...

طرح نمونه‌گیری فضایی متعادل دو مرحله‌ای برای پیش‌گویی میدان های تصادفی

: آمار فضایی علم تحلیل داده‌های وابسته فضایی است. در مطالعات محیطی گاهی با داده‌هایی وابسته‌ سروکار داریم که همبستگی آن‌ها ناشی از موقعیت قرارگیری در یک فضای معین است. از طرفی در بررسی‌های نمونه‌ای فرض بر آن است که اعضای نمونه، از جامعه‌ای با واحدهای مستقل گرفته ‌شده است. این فرض در تمامی مراحل نمونه‌گیری تحلیل و مدل‌سازی مورد استفاده قرار می‌گیرد. اما وقتی اعضای جامعه مورد مطالعه به‌نوعی وابست...

full text

My Resources

Save resource for easier access later


Journal title:
مجله علوم آماری

جلد ۱۰، شماره ۲، صفحات ۰-۰

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023